Sequential Nonparametric Regression

نویسندگان

  • Haijie Gu
  • John D. Lafferty
چکیده

We present algorithms for nonparametric regression in settings where the data are obtained sequentially. While traditional estimators select bandwidths that depend upon the sample size, for sequential data the effective sample size is dynamically changing. We propose a linear time algorithm that adjusts the bandwidth for each new data point, and show that the estimator achieves the optimal minimax rate of convergence. We also propose the use of online expert mixing algorithms to adapt to unknown smoothness of the regression function. We provide simulations that confirm the theoretical results, and demonstrate the effectiveness of the methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential design for nonparametric inference

Performance of nonparametric function estimates often depends on the choice of design points. Based on the mean integrated squared error criterion, we propose a sequential design procedure that updates model knowledge and optimal design density sequentially. The methodology is developed under a general framework covering a wide range of nonparametric inference problems, such as conditional mean...

متن کامل

Sequential Markov Chain Monte Carlo

Abstract: We propose a sequential Markov chain Monte Carlo (SMCMC) algorithm to sample from a sequence of probability distributions, corresponding to posterior distributions at different times in on-line applications. SMCMC proceeds as in usual MCMC but with the stationary distribution updated appropriately each time new data arrive. SMCMC has advantages over sequential Monte Carlo (SMC) in avo...

متن کامل

Sequential Fixed-width Confidence Bands for Kernel Regression Estimation

We consider a random design model based on independent and identically distributed (iid) pairs of observations (Xi, Yi), where the regression function m(x) is given by m(x) = E(Yi|Xi = x) with one independent variable. In a nonparametric setting the aim is to produce a reasonable approximation to the unknown function m(x) when we have no precise information about the form of the true density, f...

متن کامل

Bayesian Nonparametric Models

A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically chosen as the set of all possible solutions for a given learning problem. For example, in a regression problem the parameter space can be the set of continuous functions, and in a density estimation problem the space can consist of all densities. A Bayesian nonparametr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.6408  شماره 

صفحات  -

تاریخ انتشار 2012